Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474543

ABSTRACT

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper/chemistry , Reducing Agents , Antineoplastic Agents/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Coordination Complexes/chemistry , Ligands
2.
Chem Asian J ; 18(24): e202300753, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37886881

ABSTRACT

Using the [3+2] cycloaddition reaction of [HC≡C-GePh2 -]2 (1) and a number of RCH2 N3 , this work described the synthesis of a series of novel heterocyclic digermanes, bitriazoles [1,4-C2 HN3 (CH2 R)GePh2 -]2 , 2-12 (R=Ph, p-Tol, p-C6 H4 NMe2 , p-C6 H4 OMe, p-C6 H4 Br, m-C6 H4 NO2 , 2-Naphth, CH2 -p-OC6 H4 CHO, CH2 -p-OC6 H4 COOMe, CH2 P(O)(OEt)2 , COOEt), difficult to produce by other methods. The structural peculiarities of these compounds were studied in detail by NMR spectroscopy and by XRD analysis (for 6, 9 and 10). The properties of 1-12 were studied by UV/vis and luminescence emission spectroscopy, electrochemistry and DFT calculations, indicating an effective conjugation in their molecules.

3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834751

ABSTRACT

The search for new anticancer drugs based on biogenic metals, which have weaker side effects compared to platinum-based drugs, remains an urgent task in medicinal chemistry. Titanocene dichloride, a coordination compound of fully biocompatible titanium, has failed in pre-clinical trials but continues to attract the attention of researchers as a structural framework for the development of new cytotoxic compounds. In this study, a series of titanocene (IV) carboxylate complexes, both new and those known from the literature, was synthesized, and their structures were confirmed by a complex of physicochemical methods and X-ray diffraction analysis (including one previously unknown structure based on perfluorinated benzoic acid). The comprehensive comparison of three approaches for the synthesis of titanocene derivatives known from the literature (the nucleophilic substitution of chloride anions of titanocene dichloride with sodium and silver salts of carboxylic acids as well as the reaction of dimethyltitanocene with carboxylic acids themselves) made it possible to optimize these methods to obtain higher yields of individual target compounds, generalize the advantages and disadvantages of these techniques, and determine the substrate frames of each method. The redox potentials of all obtained titanocene derivatives were determined by cyclic voltammetry. The relationship between the structure of ligands, the reduction potentials of titanocene (IV), and their relative stability in redox processes, as obtained in this work, can be used for the design and synthesis of new effective cytotoxic titanocene complexes. The study of the stability of the carboxylate-containing derivatives of titanocene obtained in the work in aqueous media showed that they were more resistant to hydrolysis than titanocene dichloride. Preliminary tests of the cytotoxicity of the synthesised titanocene dicarboxilates on MCF7 and MCF7-10A cell lines demonstrated an IC50 ≥ 100 µM for all the obtained compounds.


Subject(s)
Antineoplastic Agents , Organometallic Compounds , Humans , Electrochemistry , Organometallic Compounds/chemistry , Antineoplastic Agents/chemistry , MCF-7 Cells , Carboxylic Acids
4.
Molecules ; 27(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364429

ABSTRACT

A series of symmetrical dibenzylidene derivatives of cyclobutanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction and by NMR and electronic spectroscopy. All the products had E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. Quantum chemistry was used to explain the observed regularities in the electrochemistry, absorption, and fluorescence of the dyes. The results are in good agreement with the experimental redox potentials and spectroscopy data.


Subject(s)
Coloring Agents , Photochemistry , Electrochemistry , Oxidation-Reduction , Magnetic Resonance Spectroscopy
5.
ACS Omega ; 7(12): 10087-10099, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382345

ABSTRACT

A series of symmetrical dibenzylidene derivatives of cyclohexanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction, NMR spectroscopy, and electronic spectroscopy. All products had the E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. The frontier orbital energies and the vertical absorption and emission transitions were calculated using quantum chemistry. The results are in good agreement with experimental redox potentials and spectroscopic data.

6.
RSC Adv ; 12(12): 7133-7148, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35424664

ABSTRACT

A series of new organic ligands (5Z,5Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-ones (L) consisting of two 5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-one units linked with polymethylene chains of various lengths (n = 2-10, where n is the number of CH2 units) have been synthesized. The reactions of these ligands with CuCl2·2H2O and CuClO4·6H2O gave Cu2+ or Cu1+ containing mono- and binuclear complexes with Cu2LCl x (x = 2-4) or CuL(ClO4) y (y = 1, 2) composition. It was shown that the agents reducing Cu2+ to Cu1+ in the course of complex formation can be both a ligand and an organic solvent in which the reaction is carried out. This fundamentally distinguishes the selenium-containing ligands L from their previously described sulfur analogs, which by themselves are not capable of reducing Cu2+ during complexation under the same conditions. A higher cytotoxicity and reasonable selectivity to cancer cell lines for synthesized complexes of selenium-containing ligands was shown; unlike sulfur analogs, ligands L themselves demonstrate a high cytotoxicity, comparable in some cases to the toxicity of copper-containing complexes.

7.
R Soc Open Sci ; 9(3): 211967, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35291328

ABSTRACT

A synthesis of dispiro derivatives from 5-methylidene-2-chalcogenimidazolones and azomethine ylides generated from isatins and N-substituted α-amino acids has been developed.

8.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681725

ABSTRACT

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1-1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2-6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu-organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu-organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2-. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.


Subject(s)
Apoptosis/drug effects , Coordination Complexes/pharmacology , Copper/chemistry , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Acetylcysteine/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Liposomes/chemistry , Liposomes/metabolism , Membrane Potential, Mitochondrial/drug effects , Metal Nanoparticles/chemistry , Oxidation-Reduction , Superoxides/metabolism
9.
ACS Omega ; 5(40): 25993-26004, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33073126

ABSTRACT

The physicochemical properties of highly stable supramolecular donor-acceptor (D-A) complexes of a bis(18-crown-6)azobenzene (weak π-donor) with a series of bis(ammonioalkyl) derivatives of viologen-like molecules (π-acceptors) in acetonitrile were studied using cyclic voltammetry, UV-vis absorption spectroscopy, 1H NMR spectroscopy, and density functional theory (DFT) calculations. The crystalline structures of the bis(crown)azobenzene and its complex with a bis(ammoniopropyl) derivative of 2,7-diazapyrene were determined by X-ray diffraction analysis. In solution, all of the supramolecular D-A complexes studied have a pseudocyclic structure owing to ditopic coordination of the ammonium groups of the acceptor to the crown ether moieties of the donor. These complexes show somewhat lower stability as compared with the previously studied complexes of the related derivative of stilbene (strong π-donor), which is explained by the relatively weak intermolecular charge-transfer (CT) interactions. Time-dependent DFT calculations predict that the low-energy CT transition in the D-A complex of the bis(crown)azobenzene with a bis(ammoniopropyl) derivative of 4,4'-bipyridine lies between the local ππ* and nπ* transitions of the azobenzene. The absorption band associated with the CT transition is indiscernible in the spectrum since it is overlapped with broad and more intense ππ* and nπ* bands. It was found that the E → Z photoisomerization quantum yield of the bis(crown)azobenzene decreases by almost an order of magnitude upon the complexation with the 4,4'-bipyridine derivative. This effect was tentatively attributed to the intermolecular electron transfer that occurs in the 1ππ* excited state of the azobenzene and competes with the 1ππ* → 1 nπ* internal conversion.

10.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32985193

ABSTRACT

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Imidazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Crystallography, X-Ray , DNA Damage/drug effects , Humans , Ligands , MCF-7 Cells , Models, Biological , Molecular Conformation , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Spheroids, Cellular/drug effects , Structure-Activity Relationship , Telomerase/antagonists & inhibitors , Telomerase/metabolism
11.
Front Immunol ; 11: 1491, 2020.
Article in English | MEDLINE | ID: mdl-32849507

ABSTRACT

Introduction: Primary immunodeficiencies (PID) are a group of rare genetic disorders with a multitude of clinical symptoms. Characterization of epidemiological and clinical data via national registries has proven to be a valuable tool of studying these diseases. Materials and Methods: The Russian PID registry was set up in 2017, by the National Association of Experts in PID (NAEPID). It is a secure, internet-based database that includes detailed clinical, laboratory, and therapeutic data on PID patients of all ages. Results: The registry contained information on 2,728 patients (60% males, 40% females), from all Federal Districts of the Russian Federation. 1,851/2,728 (68%) were alive, 1,426/1,851 (77%) were children and 425/1,851 (23%) were adults. PID was diagnosed before the age of 18 in 2,192 patients (88%). Antibody defects (699; 26%) and syndromic PID (591; 22%) were the most common groups of PID. The minimum overall PID prevalence in the Russian population was 1.3:100,000 people; the estimated PID birth rate is 5.7 per 100,000 live births. The number of newly diagnosed patients per year increased dramatically, reaching the maximum of 331 patients in 2018. The overall mortality rate was 9.8%. Genetic testing has been performed in 1,740 patients and genetic defects were identified in 1,344 of them (77.2%). The median diagnostic delay was 2 years; this varied from 4 months to 11 years, depending on the PID category. The shortest time to diagnosis was noted in the combined PIDs-in WAS, DGS, and CGD. The longest delay was observed in AT, NBS, and in the most prevalent adult PID: HAE and CVID. Of the patients, 1,622 had symptomatic treatment information: 843 (52%) received IG treatment, mainly IVIG (96%), and 414 (25%) patients were treated with biological drugs. HSCT has been performed in 342/2,728 (16%) patients, of whom 67% are currently alive, 17% deceased, and 16% lost to follow-up. Three patients underwent gene therapy for WAS; all are currently alive. Conclusions: Here, we describe our first analysis of the epidemiological features of PID in Russia, allowing us to highlight the main challenges around PID diagnosis and treatment.


Subject(s)
Primary Immunodeficiency Diseases/epidemiology , Registries , Adult , Child , Databases, Factual , Delayed Diagnosis , Hematopoietic Stem Cell Transplantation , Humans , Immunoglobulins, Intravenous/therapeutic use , Pathology, Molecular , Prevalence , Primary Immunodeficiency Diseases/therapy , Russia/epidemiology
12.
Bioorg Med Chem ; 24(4): 802-11, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26780833

ABSTRACT

A set of novel selenohydantoins were synthesized via a convenient and versatile approach involving the reaction of isoselenocyanates with various amines. We also revealed an unexpected Z→E isomerization of pyridin-2-yl-substituted selenohydantoins in the presence of Cu(2+) cations. The detailed mechanism of this transformation was suggested on the basis of quantum-chemical calculations, and the key role of Cu(2+) was elucidated. The obtained compounds were subsequently evaluated against a panel of different cancer cell lines. As a result, several molecules were identified as promising micromolar hits with good selectivity index. Instead of analogous thiohydantoins, which have been synthesized previously, selenohydantoins demonstrated a relatively high antioxidant activity comparable (or greater) to the reference molecule, Ebselen, a clinically approved drug candidate. The most active compounds have been selected for further biological trials.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antioxidants/chemical synthesis , Hydantoins/chemical synthesis , Organoselenium Compounds/chemical synthesis , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Azoles/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Copper/chemistry , Cyanates/chemistry , Drug Screening Assays, Antitumor , Glutathione Peroxidase/antagonists & inhibitors , Glutathione Peroxidase/chemistry , Humans , Hydantoins/pharmacology , Inhibitory Concentration 50 , Isoindoles , Organoselenium Compounds/pharmacology , Pyridines/chemistry , Quantum Theory , Stereoisomerism , Structure-Activity Relationship
13.
J Phys Chem A ; 119(52): 13025-37, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26650887

ABSTRACT

Molecular self-assembly is an effective strategy for controlling the [2 + 2] photocycloaddition reaction of olefins. The geometrical properties of supramolecular assemblies are proven to have a critical effect on the efficiency and selectivity of this photoreaction both in the solid state and in solution, but the role of other factors remains poorly understood. Convenient supramolecular systems to study the structure-property relationships are pseudocyclic dimers spontaneously formed by styryl dyes containing a crown ether moiety and a remote ammonium group. New dyes of this type were synthesized to investigate the effects of structural and electronic factors on the quantitative characteristics of supramolecular dimerization and [2 + 2] photocycloaddition in solution. Variable structural parameters for the styryl dyes were the size and structure of macrocyclic moiety, the nature of heteroaromatic residue, and the length of the ammonioalkyl group attached to this residue. Quantum chemical calculations of the pseudocyclic dimers were performed in order to interpret the relationships between the structure of the ammonium dyes and the efficiency of the supramolecular photoreaction. One of the dimeric complexes was obtained in the crystalline state and studied by X-ray diffraction. The results obtained demonstrate that the photocycloaddition in the pseudocyclic dimers can be dramatically affected by the electronic structure of the styryl moieties, as dependent on the electron-donating ability of the substituents on the benzene ring, and by the conformational flexibility of the pseudocycle, which determines the mobility of the olefinic bonds. The significance of electronic factors is highlighted by the fact that the photocycloaddition quantum yield in geometrically similar dimeric structures varies from ≤10(-4) to 0.38. The latter value is unusually high for olefins in solution.


Subject(s)
Ammonium Compounds/chemistry , Coloring Agents/chemistry , Crown Ethers/chemistry , Cycloaddition Reaction , Photochemical Processes , Styrenes/chemistry , Coloring Agents/chemical synthesis , Cyclization , Dimerization , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Molecular Structure , Structure-Activity Relationship
14.
Dalton Trans ; 42(18): 6290-3, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23525195

ABSTRACT

The treatment of the ligands with copper(II) chloride dihydrate led to the formation of a binuclear copper complex with a [Cu(+1.5)Cu(+1.5)] redox state as a result of C-S bond cleavage in the course of the reaction. This complex catalyses the electrochemical reduction of nitrous oxide and triphenyl phosphine oxidation under N2O action.


Subject(s)
Biomimetic Materials/chemistry , Carbon/chemistry , Catalytic Domain , Copper/chemistry , Organometallic Compounds/chemistry , Oxidoreductases/chemistry , Sulfur/chemistry , Imidazoles/chemistry , Models, Molecular , Molecular Conformation
15.
J Org Chem ; 76(16): 6768-79, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21744795

ABSTRACT

4,4'-Bipyridine and 2,7-diazapyrene derivatives (A) having two ammonioalkyl N-substituents were synthesized. The complex formation of these compounds with bis(18-crown-6)stilbene (D) was studied by spectrophotometry, cyclic voltammetry, (1)H NMR spectroscopy, and X-ray diffraction analysis. In MeCN, π-donor D and π-acceptors A form supramolecular 1:1 (D·A) and 2:1 (D·A·D) charge-transfer complexes. The D·A complexes have a pseudocyclic structure as a result of ditopic binding of the ammonium groups to the crown-ether fragments. The better the geometric matching between the components, the higher the stability of the D·A complexes (log K up to 9.39). A key driving force of the D·A·D complex formation is the excessive steric strain in the precursor D·A complexes. The pseudocyclic D·A complexes involving the ammoniopropyl derivative of 4,4'-bipyridine were obtained as single crystals. Crystallization of the related ammonioethyl derivative was accompanied by transition of the D·A complexes to a structure of the (D·A)(m) coordination polymer type.


Subject(s)
Copper/chemistry , Crown Ethers/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Polymers/chemistry , Pyrenes/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Stilbenes/chemical synthesis , Crown Ethers/chemistry , Crystallization , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure , Stilbenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...